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ABSTRACT Automated image analysis and deep learning tools such as object detection models are being
used increasingly by biologists. However, biological datasets often have constraints that are challenging for
the use of deep learning. Classes are often imbalanced, similar, or too few for robust learning. In this paper
we present a robust method relying on hierarchical classification to perform very small object detection.
We illustrate our results on a custom dataset featuring 22 classes of arthropods used to study biodiversity. This
dataset shows several constraints that are frequent when using deep learning on biological data with a high
class imbalance, some classes learned on only a few training examples and a high similarity between classes.
We propose to first perform detection at a super-class level, before performing a detailed classification at a
class level. We compare the obtained results with our proposed method to a global detector, trained without
hierarchical classification. Our method succeeds in obtaining a mAP of 75 %, while the global detector
only achieves a mAP of 48 %. Moreover, our method shows high precision even on classes with the less
train examples. Confusions between classes with our method are fewer and are of a lesser impact. We are
able achieve a more robust object classification with the use of our proposed method. This method can also
enable better control on the model’s output which can be particularly valuable when handling ecological,
biological or medical data for example.

INDEX TERMS Very small object detection, deep learning, robustness, biodiversity, taxonomy.

I. INTRODUCTION eters than classifiers, they also require more training data to

Recently, there has been a wide adoption of deep learning
techniques in various fields of study. For example, deep learn-
ing has recently been taken up by the medical and biological
sector, biological and used in ecological research [1]-[3]. For
several cases however, deep learning methods still have a lot
of limitations and constraints that hinder their proper usage.
Datasets may be limited, classes imbalanced or similar and
the labelling task too heavy to build a robust model.

While such constraints maybe overcome with transfer
learning or data augmentation for image classification, these
methods might not be sufficient when dealing with object
detection. As detectors tend to have a larger number of param-
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achieve satisfactory performances. This makes reliable object
detection and classification a major challenge when work-
ing with a custom dataset [4]. Numerous cases work with
imbalanced datasets e.g. in medical research, the number of
sane examples can outnumber the diseased ones, in particular
for very rare diseases. An unsufficiently robust deep learning
model could generate false positives, if this is not taken into
account [5].

The availability of a large enough dataset to ensure the
robustness of the predictions remains a barrier to the use of
deep learning with niche tasks. The training of a detector, with
only a few training examples is known as ‘“low-shot object
detection” or ‘““few-example object detection’. Several meth-
ods have recently been developed. Multi-modal labelling,
i.e. referring to objects with several classes is commonly
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used. Dong et al. propose a method relying on multi-modal
labellisation and different learning paces depending on class
difficulty [6]. Low-Shot Transfer Detector on the other hand
relies on transfer learning [7]. Another method is to rely
on distant metric learning [8]. Adding to the constraint of
few examples, in many practical cases, objects featured in
a dataset may be similar, requiring fine classification tasks,
which may be challenging for a deep learning model, partic-
ularly when trained on imbalanced data. Furthermore, many
cases in biology or medicine need control over the predictions
of a model to avoid false negatives or false positives [2].
In such situations, the control and robustness of a prediction
model over precise classes are more important than effi-
ciency or inference time on general datasets.

In this paper, we propose a method to detect and hierar-
chically classify very small objects on large input images.
We illustrate the usefulness of our method working on a
custom dataset showing typical constraints that could be
encountered when working on a fine detection task: limited
training examples, class imbalance and fine classification.

The main contributions and key-points of our proposed
paper can be summarized as follows:

o We propose a robust method of hierarchical classifica-
tion when performing very small object detection.

o A pre-processing step is applied to perform a super-class
detection of very small objects within large images.

o The detection and classification steps are independent,
allowing us to work with sparse datasets.

In our context, the aim of this work is to robustly detect
several species to latter study the interactions between them.
Knowing these interactions is crucial for several purposes,
such as resilient pest control. Our application highlights sev-
eral constraints of the application of deep learning in real
world situations with custom dataset.

The rest of this paper is organized as follows. First of
all, Section II reports current state-of-the-art methods on
hierarchical classification when detecting objects. Section III
describes with details the proposed method. Experimental
results are provided in Section IV. Finally, the conclusion is
drawn and future work is proposed in Section V.

Il. RELATED WORK

In this section we describe several related work concerning
low-shot object detection, then hierarchical classification,
small object detection and finally, applications in ecology.

A. LOW-SHOT OBJECT DETECTION

Low-shot object detection, i.e. the training of a detector
with only a few examples per class is a recent but active
research field. In this area, several methods have been
developed [6]-[8]. A commonly used method is to refer to
objects with several classes (multi-modal labelling) which is
the approach we selected. Otherwise, Dong et al. propose a
method communicating between model training and sample
selection [6]. Then, using this method the most challenging
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yet reliable training samples are selected. This approach can
be combined with multi-modal learning and varying learning
paces, given the difficulty of the classes.

Chen et al. rely on transfer learning with a Low-Shot
Transfer Detector [7]. While transfer learning might be prone
to overfitting with only a few training examples, they address
this challenge. The authors propose to combine SSD [9]
and Faster RCNN [10] architecture, separating bounding box
regression and object classification.

Another method is to rely on distant metric learning [8].
The extraction of low dimensional representations enables
the learning of more generic features such as class only
features. The losses are designed in an embedding space so
that different categories are not only distinct, but that similar
categories are close as well.

B. HIERARCHICAL CLASSIFICATION

Hierarchical classification has been used in deep learn-
ing for the handling of large datasets with numerous
classes [11]-[13]. For classification tasks, Katole et al.
achieved 3.2 % error rate on the ImageNet 10K dataset [11]
that features over 10,000 classes using hierarchical classi-
fication [12]. Hierarchical classification was also used for
detection tasks on ImageNet. For instance, Redmon et al.
achieved a mAP of 76.8 % on over 9000 classes [13].

C. SMALL OBJECT DETECTION

Small objects are defined by the MS COCO (Microsoft Com-
mon Objects in Context) dataset as objects occupying areas
under 32 x 32 pixels [14]. This is a challenging problem in
computer vision and several methods can be used to address
it [15]. One solution is to slice the large input image and
perform detection on slices separately before merging all
results. This method can be used for satellite imagery anal-
ysis [16] or insect detection for example [17].

D. APPLICATIONS IN ECOLOGY

Hierarchical classification is useful for small datasets requir-
ing precise classification, typically for a use in biology [18],
medicine [19] or ecology [20], [21]. Indeed, hierarchical
classification enables to better control the error rates of the
classifier [22]. For species identification, particularly, this
approach has been used following the taxonomy of different
species. While hierarchical classification has already been
developed for species classification, it has to our knowledge
not been carried out for fine detection tasks.

lil. PROPOSED METHOD
In this section, we develop our proposed method for hierar-
chical classification of very small objects. An overview of our
method is presented in Fig. 1. Objects detected on the input
images belong to N super-classes C;, with 1 < i < N. Each
super-class C; contains k; classes ¢;;, with 1 <j < k;.
During the training step, a detector is trained with objects
that have been labeled at the super-class level. The areas of
these objects are then cropped from the original images and
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FIGURE 1. Overview of our proposed hierarchical classification method.

for each super-class C;, a classifier is specifically trained to
identify the objects within the super-class into c;; classes.

During the testing step, objects are first detected at
super-class level. Detected objects are then cropped and clas-
sified with the corresponding classifier.

The super-class detection part of the process is detailed in
Section III-A, the hierarchical classification in Section I1I-B
and the evaluation metrics used to assess the performances
our method are described in Section III-C.

A. OBJECT DETECTION

With large input images, detection might require a
pre-processing phase. For this step we propose to apply
an approach based on the method proposed by Tres-
son et al. [17]. The pre-processing step is summarized in
Algorithm 1. Original images are split into small slices for
the input of a deep learning model. Slicing is performed with
an overlap O in order to reduce the risk of an object being cut
between two neighboring slices. Coordinates of the objects
are recomputed within the referential of the slices and empty
slices showing background only are discarded. The detector
is then trained on the sliced dataset. Likewise, during testing,
original images are sliced with the same parameters as during
the training. Detections of slices belonging to the same orig-
inal image are then merged together and refined to suppress
potential false positives due to overlap. This pre-processing
phase allows the detection of very small objects within very
large input images. Detection is performed with objects
identified at a super-class level.

B. OBJECT HIERARCHICAL CLASSIFICATION

For each super-class, a classifier is trained independently
on cropped ground truth objects. The model is then able to
classify objects into the k; classes ¢;; within this super-class
as illustrated in Fig. 1. During the test step, the detected
objects are cropped according to their coordinates obtained in
the coordinate system of the entire original image. Cropped
objects are then identified with the classifier model corre-
sponding to their detected super-class.
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Algorithm 1 Image and Label Pre-Processing

input : Original image of size nw x ng pixels (Iorig),
Original labels (cj;, xi, yi, wi, hi),
Slice of size ngjjce X Rglice pixels,
Overlap O
output: Sliced image, and recomputed labels
(€ijs X, Vi Wis H)
Lorig < slice(ngice, O)
for every slice do
if x;, y; within slice or 50 % of the object on the
slice or 40 % of the slice covered by object then
| recompute label

else
| Discard

C. EVALUATION METRICS

To assess detection performances, the model predictions on
the test dataset are compared with ground truth labels. The
IoU (Intersection over Union) is used to compare bound-
ing boxes. Detections are accepted as True Positive (TP) if
IoU > 0.5 and if the detected class is correct. Otherwise,
the detection is counted as FP. As well, duplicates are counted
as False Positive (FP). If a ground truth object is missed, it is
counted as FN. Performances are assessed with precision,
recall and F1-score:

. P 0
recision = ———,
p TP + FP
TP
recall = ———, )
TP + FN

Fle 2w precision X recall

3)

precision + recall

For each class, the Average Precision (AP) is computed
as the area under the precision-recall curve. AP is used to
compare performances between classes.

The mAP is favored as this indicator reacts strongly to per-
formance loss on a class, regardless of the number of objects
within the class. This is a good indicator of the performances

63927



IEEE Access

P. Tresson et al.: Hierarchical Classification of Very Small Objects: Application to Detection of Arthropod Species

TABLE 1. Classes and corresponding Super-classes.

[ Super-classes

| Train/Test examples |

Classes

| Train/Test examples |

c1,1 Isometrus maculatus 109/23
c1,2 Lycosidae msp. 1 464/117
. c1,3 Lycosidae msp. 2 237/52
C1 Arachnida 1048/252 c1.4 Salitcidae msp. 1 145/39
c1,5 Salitcidae msp. 2 93/21
c2,1 Cheilomenes sulphurea 127725
C'9 Coccinellidae 722/147 c2,2 Exochomus laeviusculus 386/74
c2,3 Psyllobora variegata 209/48
c3,1 Ceroplastes sinensis 132/24
C3 Coccoidea 8779/2929 c3,2 Dysmicoccus brevipes 394/147
c3,3 Icerya seychellarum 8253/2758
c4,1 Brachymyrmex aphidicola 189/37
c4,2 Cyphomyrmex rimosus 1114/290
c4,3 Paratrechina longicornis 560/129
c4,4 Pheidole megacephala major 3076/878
C4 Formicidae 13400/3219 c4,5 Pheidole megacephala minor 1814/461
c4,6 Solenopsis geminata minor 2982/620
c4,7 Tapinoma melanocephalum 1176/286
c4,8 Technomyrmex albipes 2197/428
c4,9 Tetramorium bicarinatum 292/90
. ¢s5,1 Pachybolidae msp. 2545/774
Cs Myriapoda 3018/862 cs5,2 Paradoxosomatidae msp. 473/88

of rare classes. However, the F1-score however still provides
information on the overall detection performances of a model.

‘We compare the performances obtained with our proposed
method with the performances obtained with a global detec-
tor trained directly across all n classes without hierarchical
classification.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, the different results obtained with our hier-
archical classification method for very small objects are dis-
cussed. First we describe the dataset we built in Section IV-A
and the deep learning models and parameters used in
Section IV-B. In Section IV-C our method is applied to a
large image from the test dataset and presented in detail.
Section IV-D gives overall performance analysis of our
method and compares the results with a global classification.

A. DATASET

For our experiments we have developed a custom dataset
featuring various insects on large input images (3, 000 x
4, 000 pixels). This dataset shows typical constraints when
performing object detection in biology.

Indeed, as illustrated in Fig. 2, some arthropods fea-
tured in this dataset are easily distinguishable, while other
classes are visually very close one to another. For instance,
Pachybolidae msp. (cs,1) (Fig. 2.a) is easily distinguishable.
On the other hand, ant species such as Technomyrmex albipes
(c4,8) (Fig. 2.b), Solenopsis geminata minor (c4,6) (Fig. 2.c),
Pheidole megacephala major (c44) (Fig. 2.d) or Phei-
dole megacephala minor (c4,5) (Fig. 2.e) are very similar.
While pictures were taken in controlled conditions, dirt and
branches were added to the background to add noise and
additional complexity for the deep learning models.
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FIGURE 2. Examples of objects found in our custom dataset:

a) Pachybolidae msp. (cs 1), b) Technomyrmex albipes (c4 g),

c) Solenopsis geminata (c, ¢), d) Pheidole megacephala major (¢ 4),
e) Pheidole megacephala minor (¢ 5).

A total of 4,102 images are used as a training dataset and
955 as a test dataset. After pre-processing, the actual training
dataset for the detector is 27,160 slices and the test dataset is
comprised of 7,000 slices.

The dataset features 26,967 objects belonging to the
5 super-classes (Cq to Cs) and 22 classes in total (see
Table 1). Classes are imbalanced as some species are more
frequent than others, between and within super-classes. For
instance, there are 16 times more Pheidole megacephala
major (ca s) training examples as Brachymyrmex australis
(c4,1) and 62 times more Icerya sechellarum (c33) as Cero-
plasted sinensis (c3,1). The most frequent class is Icerya
sechellarum (c3;3) which shows 8,253 training examples,
whereas Salticidae msp. 2 (c1,5) features only 93 training
examples.

The objects featured on the dataset are very small with
an average width of 102.54 pixels and an average height of
81.9 pixels, derived from images of 3, 000 x 4, 000 pixels,
hence the utility of the pre-processing step.
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FIGURE 3. A full example illustrating the two main steps of our
hierarchical classification method: 1) A part of an original image of our
dataset. 2) Super-class detection: Objects of super-classes C; and C, are
detected. 3) Obtained hierarchical classification: Objects of classes c5 3,
¢4,3 and ¢, g are classified.

TABLE 2. Overall performances of our hierarchical classification method
compared to a global classification.

Metric Global Hierarchical | Gain
classification | classification
Precision 0.46 0.77 0.31
Recall 0.92 0.89 -0.03
Fl-score 0.61 0.83 0.22

B. PARAMETER DESCRIPTION

Several networks were trained to obtain our experimental
results. For our method, a detector over the five super-classes
presented in Table 1 (Arachnida, Coccinellidae, Coccoidea,
Formicidae and Myriapoda) and specific classifiers for each
super-class. A global detector over the 22 classes was trained
as a comparison. All networks states were chosen to max-
imise mAP on test dataset. We use YOLOv3 [23] as a
super-class detector. Squeezenet [24] was chosen as a clas-
sifier after a benchmark for this task. YOLOv3 features
106 fully convolutional layers. The model was trained for
39 epochs for our super-class detector (66 epochs for the
global detector as a comparison) with a batch size of 4
and a learning rate of 0.001, using Adam as an optimizer.
Squeezenet features 11 layers and was trained for each class.
All training cycles lasted between 20 and 30 epochs with a
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FIGURE 4. Confusion matrices obtained from our proposed approach:

a) At the super-class detection step; b) After our proposed hierarchical
classification; c) Comparison with a global classification.

batch size of 8 and a learning rate of 0.001, using SGD as an
optimizer.
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TABLE 3. Detection and classification performances for the different Classes and Super-classes.

Super-classes Super-class Classes Global Hierarchical Gain
detection AP classification AP | classification AP

c1,1 Isometrus maculatus 0.98 0.93 -0.05

c1,2 Lycosidae msp. 1 0.24 0.72 0.48

C1 Arachnida 0.66 c1,3 Lycosidae msp. 2 0.84 0.93 0.09
c1,4 Salitcidae msp. 1 0.44 0.96 0.52

c1,5 Salitcidae msp. 2 0.31 0.96 0.65

c2,1 Cheilomenes sulphurea 0.32 1.00 0.68

C5 Coccinellidae 0.59 c2,2 Exochomus laeviusculus 0.22 0.54 0.32
c2,3 Psyllobora variegata 0.41 0.65 0.24

c3,1 Ceroplastes sinensis 1.00 1.00 0.00

C'3 Coccoidea 0.84 c3,2 Dysmicoccus brevipes 0.18 0.73 0.55
c3,3 Icerya seychellarum 0.89 0.89 0.00

c4,1 Brachymyrmex aphidicola 0.04 0.21 0.17

c4,2 Cyphomyrmex rimosus 0.77 0.70 -0.07

c4,3 Paratrechina longicornis 0.36 0.77 0.41

c4,4 Pheidole megacephala major 0.87 0.94 0.07

C'4 Formicidae 0.80 c4,5 Pheidole megacephala minor 0.38 0.63 0.25
c4,6 Solenopsis geminata minor 0.39 0.66 0.27

c4,7 Tapinoma melanocephalum 0.45 0.75 0.30

c4,8 Technomyrmex albipes 0.22 0.67 0.45

c4,9 Tetramorium bicarinatum 0.51 0.89 0.38

. c5,1 Pachybolidae msp. 1 0.36 0.44 0.08

C’s Myriapoda 045 o' Paradoxosomatidae msp. | 0.29 0.59 0.30
mAP 0.67 0.48 0.75 0.27

C. A FULL EXAMPLE

A full example of the processing for our proposed hierarchical
classification method is detailed in Fig. 3. The image on
Fig. 3.1 is a detail of 980 x 400 pixels from an image of our
test dataset. When fed to the super-class detector, scale insects
(C3 Cocooidae) and ants (C4 Formicidae) are detected. The
objects are then cropped given their coordinates and these
cropped images are fed in to their respective classifiers for
hierarchical classification into the I seychellarum (c33),
P. longicornis (c43) and T. bicarinatum (c4,9) classes.

D. PERFORMANCE ANALYSIS

The overall performance of our method compared to a global
detector trained on all classes is available in Table 2. First
considering only the detection task, our method achieves an
overall precision of 0.77, a recall of 0.89, meaning a F1-score
of 0.83. However, global detection and classification achieves
a precision of 0.46 and a recall of 0.92. This leads to an
overall F1-score of 0.61 (see Table 2). So, when considering
the detection task only, hierarchical classification leads to
better results with a gain of 0.22 on the F1-score, thanks to the
super-class detector having better generalised than a global
detector.

As shown in Table 3, global classification achieves a mAP
of 0.48 with strong disparities among classes. Indeed, some
classes such as I. maculatus (c33), C. sinensis (c3,1) and
P. megacephala (ca.4) show very good AP, whereas others,
such as B. australis (c4,1) or T. albipes (ca g) show very poor
AP. With our proposed hierarchical classification, we achieve
a far greater mAP of 0.75. Furthermore, disparities between
classes are lower. These performance differences are par-
ticularly noticeable for classes with less training examples.
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Indeed, the average AP of the global classifier on classes
with less than 500 training examples (c2,1 Cheilomenes sul-
phurea or c3 2 Dysmicoccus brevipes for instance) is of 0.44,
whereas it is of 0.77, with our hierarchical classification.

Fig. 4 illustrates the confusion matrices obtained from our
proposed approach, just after the super-class detection step,
Fig. 4.a, and at the end of our hierarchical classification,
Fig. 4.b. As illustrated in Fig. 4, although our proposed
method shows less confusions between classes compared to
a global classification, as illustrated in Fig. 4.c (197 confu-
sions against 315 for the global detector), this alone does not
explain the difference in precision between the two methods.
Indeed, the vast majority of the false positives generated by
the global detector are detections of non-existent objects in
the background (7,981 out of the total 8,296 false positives)
noted in red in the last row of the confusion matrices in Fig. 4.
The better performances of our proposed method comes from
a more robust detection than from a finer classification.

An example illustrating this difference is presented
in Fig. 5. We can see in Fig. 5a that several false positives have
been detected. On the contrary, with our approach, illustrated
in Fig 5b, all the false positives have been removed, whilst
keeping all true positives.

Furthermore, we observe on Figure 4 that most of the
confusions by our hierarchical approach are within the
same super-class (mostly ants from other ants). These con-
fusions are arguably of a lesser impact than confusions
between objects of different super-classes (ants for spiders,
for example).

It should be noted from these results that the image reso-
lution could be decreased for the detection step with minimal
degradation to the results obtained. However, the specialized
classifiers should always work on the best resolution images.
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(a) Global classification

(b) Hierarchical classification

FIGURE 5. Comparison of obtained results between our proposed
hierarchical classification and a global classification on an image detail.
Our method generates less false positives with noised backgrounds.

This would further reduce the inference time with minimal
impact on performance. Regarding the inference time, with
the parameters described in Section IV-B and the hardware
used (GPU: Nvidia GeForce GTX 1080, 32 GB RAM),
the inference time for the detection with YOLOv3 [23] is
about 20 ms per slice (i.e., 140 ms on average, per entire orig-
inal image) and the inference time per object for classification
is about 20 ms, including the cropping step.

V. CONCLUSION

In this paper, we described a hierarchical classifier which
is a robust method to achieve small object detection and
fine classification. We demonstrate the utility of our method
on a custom dataset showing classical constraints that may
limit the use of deep learning, such as class imbalance, few
examples, similar or noisy objects. This method could be
very valuable to researchers still encountering issues while
working with deep learning on custom datasets.

The robustness and reliability of our proposed method
could be further improved by adding specific confidence
thresholds for the different classes and super-classes (see
Villon et al. [22]).
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